

Mark Scheme

Sample Assessment Material 2018

Pearson Edexcel International GCSE Chemistry (4CH1) Paper 2C

Question number	Answer	Additional Guidance	Marks
1 (a)	M1 (bromine) brown	ACCEPT orange ALLOW red	2
	M2 (Iodine) purple	ACCEPT violet	
(b) (i)	diffusion		1
(ii)	$I_2(s) \rightarrow I_2(g)$		1

Total for Question 1 = 4 marks

Question number	Answer	Additional guidance	Marks
2 (a)	melt the lead(II) bromide	REJECT any reference to dissolving in water	1
(b)	M1 (A) electrons / e ⁻ / e M2 (B) lead(II) ions / Pb ²⁺		3
	M3 (C) bromide ions / Br ⁻	If both name and formula given both must be correct	
(c) (i)	Pb ²⁺ + 2e ⁻ → Pb		1
(ii)	lead(II) ions are gaining electrons / the reaction involves the gain of electrons		1

Total for Question 2 = 6 marks

Question number	Answer	Additional guidance	Marks
3 (a) (i)	Volume of methane Volume of oxygen 0 1000 100 900 200 800 600 400 800 200 1000 0		1
(b) (i)	distance travelled by bottle in cm ³ 4 2 0 200 400 600 800 1000 volume of methane used in cm ³	M1 all six points plotted correctly to the nearest gridline M2 and M3 both straight lines drawn as best fit to points plotted Award only 1 mark for M2 and M3 if lines drawn without the aid of a ruler	3
(ii)	 wolume read correctly to nearest gridline from graph drawn vertical line drawn from point of intersection to horizontal axis 	Expected value is 330 cm ³	2
(c)	to obtain a better idea of where the two lines intersect		1

Total for Question 3 = 7 marks

Question number	Answer	Additional guidance	Marks
4 (a)	C (CH₃COOH)		1
(b)	B (5)		1
(c)	B (carbon dioxide)		1
(d)	ethyl ethanoate	ACCEPT ethyl acetate	1
(e)	0 - - - -		1

Total for Question 4 = 5 marks

Question number	Answer Additional Guidance							Marks
5 (a)	+							3
	l N	Name of alcohol	Molecular formula	Structural formula	Di:	splayed ormula		
	met	thanol			н-	т-О-т О- Т-		
	etha	anol		CH3CH2OH			-	
	pro	panol	C3H8O				-	
	buta	anol					-	
(b) (i)	nhosnh	oric acid				ACCEP1		1
	рпозрт	oric dela					ric(V) acid	1
(ii)	M1 300	0 °C				tempera range of tempera between 350 °C	ture, or	2
	M2 60	– 70 atm	า			of press	e, or range	

Total for Question 5 = 6 marks

Question number	Answer	Additional guidance	Marks
6 (a)	Copper: electrostatic (force of) attraction between the nuclei (of the atoms) and the delocalised electrons	ACCEPT sea of electrons	2
	Graphite: electrostatic (force of) attraction between the nuclei (of the atoms) and the bonding/shared pair of electrons	Penalise omission of electrostatic once only	
(b)	An explanation that links the following two statements:		2
	M1 delocalised electrons	ACCEPT sea of electrons	
	M2 are free to flow (in an electric field)	M2 DEP on M1	
	cicetric ricia)	ALLOW just 'electrons are free to flow' for one mark	
(c)	An explanation that links the following two statements:		2
	M1 the covalent bonds are strong	ACCEPT description of covalent bonds ACCEPT bonds between the atoms ACCEPT intramolecular bonds	
	M2 so a lot of energy is required to break them	M2 DEP on covalent bonds, or equivalent, have to be broken	

Total for Question 6 = 6 marks

Question number		Answer	Additional guidance	Marks
7 (a)		M1 Fe Cr O 25.0 ÷ 56 46.4 ÷ 52 28.6 ÷ 16		3
		OR 0.446 0.892 1.79 (mol)		
		M2 0.446 ÷ 0.446 0.892 ÷ 0.446 1.79 ÷ 0.446		
		M3 1 : 2 : 4		
(b) (i	i)	FeCr ₂ O ₄ + 2 KOH + 1 ½ O ₂ \rightarrow FeO + K ₂ Cr ₂ O ₇ + H ₂ O	ACCEPT multiples	1
(i	ii)	$K_2Cr_2O_7 + 2 C \rightarrow Cr_2O_3 + K_2CO_3 + CO$	ACCEPT multiples	1
(ii	ii)	An explanation that links the following two points:		2
		M1 chromium	ACCEPT the	
		M2 because it has lost oxygen	chromium ion has gained (3) electrons ACCEPT its oxidation number has decreased (from +3 to 0)	
(i	v)	An explanation that links the following two points:		2
		M1 aluminium is more reactive (than chromium)		
		M2 because it displaces chromium from its oxide		
(c) (i)	(from) orange (to) green	ACCEPT blue as final colour	1
(i	ii)	ethanoic acid	ACCEPT acetic acid	1

Question number	Answer	Additional guidance	Marks
8 (a)	M1 $21.0 - 4.1 = 16.9$ M2 $Q = 35 \times 4.18 \times 16.9$		3
	M3 2472 (J)	ACCEPT 2500	
(b)	M1 $n[\text{citric acid}] = 0.035 \times 1.00$ OR 0.035 (mol)	If no answer given in (a) give full credit for use of 2500	3
	$\mathbf{M2} \qquad \Delta H = \frac{Q}{n}$		
	OR (2.472) 0.035		
	M3 $\Delta H = +70.6 \text{ (kJ/mol)}$	Positive sign must be included	
		Mark M2 and M3 CQ on M1	
		ACCEPT any number of sig figs except 1 Correct answer with no working scores 3	

(c)	,	products	M1 Energy axis drawn and labelled	3
	Energy	reactants	M2 energy level of products above reactants	
			M3 reactants and products labelled	
			ACCEPT names for reactants and products	
(d)	An ex points	planation that links the following two :		2
	М1	a burette has a greater resolution / has finer graduations / has been calibrated more accurately/precisely		2
	M2	therefore the volume of acid measured is likely to be more accurate/more precise		

Total for Question 8 = 11 marks

Question number		Answer	Additional guidance	Marks
9 (a)	M1	place the sodium hydroxide in a burette and note the initial reading		5
	M2	use a pipette to place known volume/25.0 cm³ of sulfuric acid into the conical flask and add a few drops of phenolphthalein		
	М3	add the sodium hydroxide until the phenolphthalein turns pink on the addition of one drop		
	M4	note final the reading of the alkali and then calculate the volume of alkali added		
	М5	repeat the titration to obtain concordant results		
(b) (i)	M1	$n[NaOH] = 0.02385 \times 0.400$		2
	M2	= 0.00954 (mol)		
(ii)	M1	$n[H_2SO_4] = \frac{1}{2} \times 0.00954$ OR 0.00477 (mol)		З
	M2	conc. $H_2SO_4 = 0.00477 \times (1000 \div 25.0)$		
	МЗ	= 0.191 (mol/dm³)	ACCEPT 0.01908 and 0.19	

(c)	M1	heat/boil the solution until crystals form in a sample of solution that has been removed and cooled	ACCEPT heat/boil until crystals start to form (on the surface) ACCEPT heat/boil to evaporate some the water	4
	M2	leave the solution to cool so that crystals form		
	МЗ	filter to obtain the crystals		
	M4	dry the crystals between sheets of filter paper	ACCEPT any suitable method of drying, e.g. place in a warm oven	

Total for Question 9 = 14 marks